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Alzheimer's disease (AD) researchers commonly use MRI as a quantitative measure of disease severity. Histori-
cally, hippocampal volume has been favored. Recently, “AD signature” measurements of gray matter (GM) vol-
umes or cortical thicknesses have gained attention. Here, we systematically evaluate multiple thickness- and
volume-based candidate-methods side-by-side, built using the popular FreeSurfer, SPM, and ANTs packages, ac-
cording to the following criteria: (a) ability to separate clinically normal individuals from those with AD; (b) (ex-
tent of) correlationwith head size, a nuisance covariatel (c) reliability on repeated scans; and (d) correlationwith
Braak neurofibrillary tangle stage in a groupwith autopsy.We show that volume- and thickness-basedmeasures
generally perform similarly for separating clinically normal from AD populations, and in correlation with Braak
neurofibrillary tangle stage at autopsy. Volume-basedmeasures are generally more reliable than thickness mea-
sures. As expected, volume measures are highly correlated with head size, while thickness measures are gener-
ally not. Because approaches to statistically correcting volumes for head size vary andmay be inadequate to deal
with this underlying confound, and because our goal is to determine ameasurewhich can beused to examine age
and sex effects in a cohort across a large age range, we thus recommend thickness-based measures. Ultimately,
based on these criteria and additional practical considerations of run-time and failure rates, we recommend an
AD signature measure formed from a composite of thickness measurements in the entorhinal, fusiform,
parahippocampal, mid-temporal, inferior-temporal, and angular gyrus ROIs using ANTs with input segmenta-
tions from SPM12.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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tern of tau deposition much more than with that of ß-amyloid (Jack et
al., 2008; Whitwell et al., 2008). Because pathological studies suggest
that the regions first affected by tau in the typical disease progression
are specifically those in layers II and IV of the entorhinal cortex followed
by the subiculum/CA1 of the hippocampus (Braak and Braak, 1991;
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Gómez-Isla et al., 1996; Hyman et al., 1984), volume of the entorhinal
cortexwas also soon proposed as anAD imaging biomarker, and the rel-
ative merits of hippocampal volume versus entorhinal cortex volume
have been debated (Bobinski et al., 1999; de Leon et al., 2001;
Dickerson et al., 2001; Du et al., 2003; Juottonen et al., 1999; Kesslak
et al., 1991; Killiany et al., 2002; Tapiola et al., 2008; Xu et al., 2000).
Some studies have found superior or comparable separation or predic-
tive power of the entorhinal cortex (Bobinski et al., 1999; Dickerson et
al., 2001; Du et al., 2003; Killiany et al., 2002; Tapiola et al., 2008),
while others have favored hippocampal volumes with the explanation
that greater reliability ofmeasuring hippocampal volumes compensates
for its slightly later stage of being affected by the disease (Juottonen et
al., 1999; Kesslak et al., 1991; Xu et al., 2000). Methods using machine
learning classifiers were later proposed to analyze volume-based fea-
tures of voxels/regions across the whole brain in search of a measure
based on a “signature” region of interest (ROI) (i.e. a set of voxels, or a
set of ROIs combined into a meta-ROI) to measure Alzheimer's disease
(Fan et al., 2008; Ortiz et al., 2014; Vemuri et al., 2011, 2008; Xia et al.,
2013).

When methods designed to measure in-vivo cortical thickness from
MRI were introduced (Das et al., 2007; Fischl and Dale, 2000;
MacDonald et al., 2000), regional thickness values, particularly in the
entorhinal cortex, were quickly proposed as measures of AD severity
(Bakkour et al., 2009; Dickerson et al., 2009; Fischl et al., 2009; Lerch
et al., 2005). Thickness of the (whole) hippocampus is generally not
considered as an option (FreeSurfer FAQ, 2015): the structure of the
hippocampal cortex folds upon itself and appears bulbous, rather than
thin and ribbon-like as in the rest of the cortex. Some softwaremethods
have been designed to segment hippocampal subfields, but these do not
produce thickness measures (Iglesias et al., 2015; van Leemput et al.,
2008). The use of cortical thicknessmeasurements combined frommul-
tiple regions into an “AD Signature” meta-ROI has also been proposed
(Dickerson and Wolk, 2012; Dickerson et al., 2009). Others have pro-
posed longitudinal AD signature methods based on tensor-based mor-
phometry features (Hua et al., 2009), but longitudinal measures will
not be the focus of this manuscript.

Since the introduction of hippocampal volumes, these and other vol-
ume measurements have been normalized by or corrected for inter-
subject variation in brain size or head size (Jack et al., 1992, 1989;
Kesslak et al., 1991; Scheltens et al., 1992; Seab et al., 1988). Most com-
monly, head size is defined and measured as total intracranial volume
(TIV), and volume measurements are applied as a ratio after dividing
by TIV (Bobinski et al., 1999; Jack et al., 1992; Juottonen et al., 1999),
as a residual after adjusting for TIV in a regression model (Jack et al.,
2014; Voevodskaya et al., 2014), or simply as a covariate in a regression
model. However, there has been no universal agreement on how to ad-
just volume measures for TIV, and differing methods have been shown
to produce differing analyses (Hansen et al., 2015; Nordenskjöld et al.,
2013; Voevodskaya et al., 2014).

Although cortical thickness and surface area seem to be biologically
distinct quantities (Panizzon et al., 2009), GM volume measurements
are a combination of both that is dominated by surface area much
more than thickness (Winkler et al., 2010). Because surface area is high-
ly correlated with TIV (Barnes et al., 2010), it follows that volume
(which is highly correlated with surface area) is also highly correlated
with TIV, while thickness (which is much less correlated with surface
area) is not. This has led to previous recommendations to adjust for
head size when using volume, but not thickness, measurements
(Barnes et al., 2010; Westman et al., 2013). Despite these methodolog-
ical differences, hippocampal volume and entorhinal cortical thickness
offer similar diagnostic separability performance, and thus the degree
of nuisance correlation with TIV becomes an important practical
difference.

Our goal in this study is to produce a measure suitable for epidemi-
ological assessment of disease burden over the entire age range, which
includes examining the effects of sex. To assess their suitability for this
purpose, we perform large-scale comparisons of several distinct tech-
niques (volume measurements based on SPM12 and on FreeSurfer,
and cortical thickness measurements based on ANTs and FreeSurfer)
for creating volume- and thickness-based meta-ROI “signature” mea-
sures of AD according to a variety of desirable properties. Our evaluation
criteria are the following: (a) separation of clinically normal (CN) older
adults from AD patients according to clinical diagnosis; (b) (extent of)
correlation with TIV in CN older adults; (c) reliability in a single-site
short-time repeat-scan study of CN subjects of varying ages and in a
larger, multi-site 3-month repeat-scan study of older CN subjects; and
(d) correlation of these in-vivo measurements with Braak neurofibril-
lary tangle stage at autopsy.

2. Methods

First, we describe each of the four datasets used in this work. Addi-
tional characteristics of the subjects included in each are provided in
Supplementary Table S1. All studies were approved by their respective
institutional review boards and all subjects or their surrogates provided
informed consent compliant with HIPAA regulations. Next, we describe
all employed software pipelines. MRI scanning parameters are de-
scribed later, in Section 3.

2.1. Subject characteristics

2.1.1. Mayo clinical diagnostic separability dataset
This dataset includes scans of 216 subjects from the Mayo Clinic

Study of Aging (MCSA) and the Mayo Clinic Alzheimer's Disease Re-
search Center (ADRC) studies. MCSA is an epidemiological study of cog-
nitive aging in Rochester, Olmsted County, Minnesota (Petersen et al.,
2010; Roberts et al., 2008). TheADRC study recruits and follows subjects
initially seen as patients at the Mayo Clinic Behavioral Neurology prac-
tice. 108 subjects were clinically diagnosed with either AD dementia
or mild cognitive impairment (MCI) according to established criteria,
and 108 clinically normal control subjects were matched one-to-one
to the MCI/AD subjects according to age, sex, and TIV. The MCI/AD sub-
jects were documented to be amyloid positive and the CN subjects am-
yloid negative, to create an impaired group within the AD pathway and
a non-impaired groupnot in theADpathway (Jack et al., 2014). Amyloid
positivity was determined from late uptake PET scans of each subject
with Pittsburgh compound B (Klunk et al., 2004). PET image analysis
was performed using a previously-described in-house automated pipe-
line (Senjem et al., 2005) using structural MRI to perform two-class par-
tial volume correction and provide ROI placement (Jack et al., 2008). An
amyloid-PET standardized uptake value ratio (SUVR) was calculated as
the median uptake over voxels in the prefrontal, orbitofrontal, parietal,
temporal, anterior cingulate, and posterior cingulate/precuneus regions
divided by themedian uptake from the cerebellar GM (Jack et al., 2013).
A previously determined cut point of SUVR 1.4 was used to denote am-
yloid positive/negative (Jack et al., 2014).The clinical diagnosis criteria
for normal subjects were: no cognitive complaints, normal neurological
exam, no active psychiatric or neurological conditions, no psychoactive
medications, and prior resolution of any previous neurological or psy-
chiatric conditions. Subject ages were between 60 and 91 years, median
77. Two subjects, one with a diagnosis of MCI and one with AD, failed
FreeSurfer processing (defined as either program failure to produce an
output, or a produced output with a portion of cortical ribbon placed in-
correctly) and were excluded from all FreeSurfer-based volume and
thickness analyses.

2.1.2. Mayo Clinic reliability dataset
This dataset includes scans of 21 clinically normal control subjects

from the Mayo Clinic MCSA/ADRC studies, pooled from two groups. It
includes eight subjects, ages 30–47, with pairs of baseline and follow-
up scans on the same scanner within a range of 5.9–8.2 months, and



804 C.G. Schwarz et al. / NeuroImage: Clinical 11 (2016) 802–812
thirteen subjects, ages 75–90,with pairs of baseline and follow-up scans
on the same scanner within two weeks.

2.1.3. ADNI reliability dataset
We identified a total of 133 ADNI subjects with pairs of serial T1-

weightedMRI scans on the same scannerwithin amedian of 3.0months
(range 1.8–3.9months)with a clinical diagnosis of CN that remained for
at least 12 months after the baseline scans. Subject ages were 59–88,
median 72. The data used in this dataset were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). For up-to-date information, see theADNI homepage
(ADNI Home, 2013).

2.1.4. Mayo Clinic pathology (Braak-stage) correlation dataset
This dataset includes scans of 82 subjects, ages at death ranged from

51 to 101, median 84, fromMayo Clinic MCSA/ADRC studies with Braak
neurofibrillary tangle stage (Braak and Braak, 1991) determined at au-
topsy and a usable in-vivo structural MRI scan within five years before
death (range 0.2 to 4.5, median: 2.3 years). These subjects were deter-
mined to be part of the AD spectrum based on their pathology; subjects
with high likelihood of other dementia (i.e. DLB, FTD, vascular, etc.)
were not included. One subject failed FreeSurfer processing andwas ex-
cluded from all FreeSurfer-based volume and thickness analyses.

2.2. Common preprocessing

Mayo-study data were acquired with gradient distortion correction
in the sagittal plane performed on the scanner. Through plane correc-
tion was performed as part of image processing (Jovicich et al., 2006).
For ADNI data, distortion correctionwas applied on the scanner as avail-
able, with offline correction as necessary using the same method as
above, to create datasets also with full 3D correction. After this step,
the images entered each of the five software pipelines (two for gray
matter volume, and three for cortical thickness) described below.

2.3. Volume and thickness methods

2.3.1. SPM12 GM volume methods
SPM12 gray matter volumes were calculated from each

preprocessed T1-weighted image using the “Segment” (formerly
“New Segment” in SPM8) implementation of the Unified Segmentation
algorithm(Ashburner and Friston, 2005) included in the original release
version of SPM12 (revision 6225). Inhomogeneity (B0 bias-field) cor-
rection was performed as part of this process. In order to produce
more accurate segmentations for older-adult populations, we altered
several parameters in SPM12 from their defaults. Firstly, we used an
in-house customized population-specific template, tissue priors, and
atlas labels (see Section 2.5). Secondly, we used two Gaussians to
model white matter (WM) intensities, rather than the default of one,
to account for the increased variance in WM intensities due to higher
prevalence of WM disease in these populations. We also reduced each
of the stiffness penalty parameters of the nonlinear normalization of
the segmentation priors to half of their defaults, allowing for increased
inter-subject variability due to increased prevalence and severity of at-
rophy and other pathologies. Formal validation of these parameter al-
terations is beyond the scope of this manuscript, but will be presented
separately in a future publication. Output tissue segmentations from
this method were used directly to produce the regional values in the
SPM GM volume pipeline. The bias-corrected T1 and segmentation out-
puts produced by this process were also used as inputs to some of the
following pipelines, where specified.

2.3.2. FreeSurfer GM volume methods
FreeSurfer GM volumes were produced using the recon-all script, in

cross-sectional mode, of FreeSurfer version 5.3 (Fischl, 2012) on each
T1-weighted scan. We used the recon-all flag -3T, which alters
FreeSurfer's internal N3 bias field correction (Sled et al., 1998) parame-
ters to be more appropriate for 3T MRI (Zheng et al., 2009) and uses a
3T-based atlas for Talairach alignment (FreeSurfer Release Notes,
2015). Use of this flag improved diagnostic separability and reduced
failure rates of FreeSurfer cortical thicknesses during preliminary inter-
nal testing (data not presented). Volumes in each ROI of FreeSurfer's
atlas were obtained directly from FreeSurfer's output aseg.stats and
aparc.stats files. FreeSurfer segmentation outputs were each visually
inspected for severe errors. When severe errors occurred, or when
FreeSurfer crashed without providing outputs and this was not fixed
by repeated attempts, FreeSurfer analyses of those scans were omitted,
and we noted these instances in Section 2.1. No manual correction of
FreeSurfer segmentations was performed.

2.3.3. FreeSurfer cortical thickness methods
FreeSurfer cortical thickness values were also output by the same

recon-all script executions that produced GM volumes as described in
Section 2.3.2. Thicknesses in each ROI of FreeSurfer's atlas were obtain-
ed from FreeSurfer's output *.aparc.stats files. Internally, FreeSurfer's
cortical thickness algorithm calculates the mean distance between ver-
tices of a corrected, triangulated estimated GM/WM surface and GM/
CSF (pial) surface (Fischl and Dale, 2000).

2.3.4. ANTs cortical thickness methods
ANTs cortical thickness was run using its included

antsCorticalThickness.sh script, dubbed the ANTs Cortical Thickness Pro-
cessing Pipeline (Tustison et al., 2014). This was applied to the bias-
corrected, preprocessed image as output by our customized SPM12
pipeline described in Section 2.3.1, because preliminary internal testing
showed slightly increased diagnostic separability by using the bias-
corrected image as input (despite then-redundant correction by N4
later within the pipeline), rather than the preprocessed input corrected
only for gradient-warping (data not presented). Improvement by this
double-bias correction may reflect an additive combination of two
methods with highly-differing assumptions, but it may also reflect a
combination of both methods' errors producing increased disease-de-
pendent errors. We include in our comparison this variant that pro-
duced superior separation in order to compare each method with its
optimal parameters, but we leave further exploration of bias correction
methods and their effects to future work. Because the ANTs package
does not include a stock template or segmentation priors, we used our
in-house population-specific template/priors, which we describe in
Section 2.5 and show in Supplementary Fig. S1.

Internally, the ANTs cortical thickness pipeline performs its own bias
correction using the N4 algorithm (Tustison et al., 2010), segmentation
using ANTs' Atropos algorithm (Avants et al., 2011), and finally cortical
thickness calculation using these segmentations as input. ANTs' cortical
thickness algorithm, DiReCT, performs a nonlinear registration between
a mask of voxels segmented asWM and a mask of voxels segmented as
either GM or WM, measuring the distance from start to finish at each
GM-segmented location. This can be thought of as growing the WM/
GM surface (outer contour of the WM-segmented voxels) across the
GM ribbon to reach the GM/CSF surface (outer contour of a mask of
GM voxels + WM voxels) and measuring the distance moved (Das et
al., 2009). We compiled the most recent ANTs package source code
from the public repository (GitHub - stnava/ANTs: Advanced
Normalization Tools, 2015) at the time, February 25, 2014.

2.3.5. SPM12 segmentations input to ANTs thickness (SPM+DiReCT) corti-
cal thickness methods

While the ANTs cortical thickness pipeline provides an end-to-end
solution to produce cortical thickness values, it is also possible to run
only the cortical thickness algorithm (DiReCT) using directly-input tis-
sue segmentations. For this approach, we used the SPM12 GM and
WM tissue segmentations produced as described in Section 2.3.1 direct-
ly as input into ANTs' DiReCT algorithm (implemented by its included
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KellyKapowski software), after relabeling subcortical GM structures as
WM, mirroring the standard ANTs thickness pipeline's process. Param-
eters to KellyKapowskimatched those used in antsCorticalThickness.sh.
2.4. TIV calculation methods

TIV obtained from FreeSurfer was used in assessing correlations be-
tween FreeSurfermethods and TIV. Internally, FreeSurfer TIVs are calcu-
lated using the warp parameters calculated for transforming subject
scans to a template, a method which has been previously described
and validated (Buckner et al., 2004).

SPM and the ANTs cortical thickness pipeline do not provide stan-
dard measures of TIV. To calculate TIV values used for assessing correla-
tion of TIV with volume and thickness measures from each pipeline, we
calculated TIV from SPM12 segmentations as follows. The segmentation
output images for GM, WM and CSF were summed and thresholded at
0.5 to form a binary image. Empirically, this image may contain some
extra-cranial voxels if they are particularly isointense to the intra-crani-
al tissues. The binary imageswere erodedwith three passes of a 27-con-
nected kernel. The largest connected component was selected, and all
smaller components were removed. Four passes of image dilation
were performed using a 27-connected kernel. Any voxels in the dilated
mask which were not included in the original binary image were ex-
cluded. Lastly, a 3D hole-fill was performed to arrive at a final TIV
mask. TIV then measured as the product of voxel size and the number
of voxels in the final mask. The first steps of this independently-devel-
oped method, prior to the morphological cleanup steps, match a previ-
ously validatedmethod using SPM5 that was shown to bemore reliable
than TIV estimates from FreeSurfer 3.0.2 (Pengas et al., 2009). Similar
TIV estimation methods based on thresholded SPM12 segmentations
have also been shown to have significantly higher agreement with
ground truth than those from either FreeSurfer 5.1.0 or SPM8 (Malone
et al., 2015).
2.5. Atlas and ROI parcellation methods

For methods based on SPM and ANTs, we employed a common ana-
tomical template/atlas to parcellate each method's output per-voxel,
native-spacemeasurements into a set of ROIs. Rather than employ pop-
ular public templates derived from younger populations, we used an in-
house template, specific to our study population, called MCSA202. This
template was created from scans of 202 subjects in the Mayo Clinic
Study of Aging and theMayo Clinic Alzheimer's Disease Research Center
studies (Petersen et al., 2010; Roberts et al., 2008). Briefly, each subject's
T1-weighted MRI was segmented using the SPM12 software with de-
fault settings and a custom template was created from these segmenta-
tions using the DARTEL groupwise, nonlinear registration algorithm as
included in SPM12 (Ashburner, 2007). For each input T1-weighted
image in this work, we calculated a nonlinear registration between it
and our MCSA202 template using the ANTs SyN registration algorithm
(Avants et al., 2008) usingmultiple channels including the T1-weighted
images, segmented tissue probabilities, and a mask of TIV. In the space
of the MCSA202 template, we have produced a set of 122 anatomical-
ly-defined graymatter ROIs that we call our ADIR122 atlas. The ROIs de-
fined in this template space were then warped and resampled with the
nearest-neighbor method to the space of each input T1-weighted
image. These subject-space atlas labels were then used to parcellate
voxel-wise volume/thickness measurements into a set of ROIs. For vol-
umes, we calculated the sum of the segmented GM probabilities per-
voxel, and for thicknesses we calculated the mean thickness value
across voxels segmented as GM by each method. The MCSA202 tem-
plate, its associated tissue priors, and the ADIR122 atlas will be fully de-
scribed as part of a subsequent publication, and are visualized in Fig. S1
in the Supplementary material.
For methods based on FreeSurfer, we directly used the volume and
thickness values provided by FreeSurfer, which are calculated using
FreeSurfer's native Desikan-Killiany atlas (Desikan et al., 2006).

3. Experiments

This section provides descriptions of the experiments performed
using each dataset. All scans usedwere validated in-house by expert an-
alysts to confirm acceptable image quality and lack of significant con-
founding pathology. All segmentation, cortical thickness, and ROI
parcellation outputs from eachmethodwere examined to assess failure
rates and exclude subjects from each analysiswhere necessary. Descrip-
tions of subject characteristics and any failure-based exclusions were
noted in Section 2.1.

3.1. Mayo clinical diagnostic separability dataset

T1-weighted MRI scans were performed on 3T scanners (models
Discovery MR750, Signa Excite, Signa Excite, Signa HDx, Signa HDxt)
manufactured by General Electric (GE) using a Sagittal 3D magnetiza-
tion prepared rapid acquisition gradient recalled echo (MP-RAGE) se-
quence. Repetition time (TR) was ≈2300 ms, echo time (TE) ≈ 3 ms,
and inversion time (TI) = 900 ms.Voxel dimensions were
≈1.20 × 1.015 × 1.015 mm.

The area under the receiver operating characteristic curve (AUROC)
with 95% confidence limits was calculated using this dataset to assess
the ability of volume or thickness measures produced by each method
to separate clinically normal subjects from those diagnosed with either
MCI or AD. Spearman rank correlationswith 95% confidence limits were
used to assess correlations between volume or thickness measures and
TIV among the CN subjects in this dataset.

3.2. Mayo Clinic reliability dataset

MRI acquisition parameters for these subjects were the same as
those in Section 3.1.

Intraclass correlation coefficients (ICC) with 95% confidence limits
were calculated using this dataset to assess repeatability of the volume
and thickness measures produced by each method. It is assumed that
these subjects should not have significant structural changes within
such a small timewindow, and thus all differences between serial mea-
surements can be attributed to measurement error.

3.3. ADNI reliability dataset

Details of ADNI-standard acquisitions have been previously pub-
lished (Jack et al., 2010). Scans were included from three manufac-
turers: 34 GE-scanned subjects, 77 Siemens-scanned subjects, and 22
Philips-scanned subjects.

We used this dataset to assess repeatability of each method's mea-
surements in a multi-site, multi-vendor setting using publically avail-
able data. Again, we assume no significant neurological changes
occurred and thus all differences between serial measurements can be
attributed to noise and error. ICCs were calculated within manufac-
turers as well as among all manufacturers combined.

3.4. Mayo Clinic pathology (Braak-stage) correlation dataset

Neuropathologic sampling followed recommendations of the Con-
sortium to Establish a Registry for Alzheimer's Disease (CERAD). Further
details were previously published (Knopman et al., 2003). MRI parame-
ters were identical to those in Section 3.1. For each method, volume or
thickness values were taken only from the hemisphere on which path-
ological assessment was performed.

Spearman rank correlations with 95% confidence limits were calcu-
lated using this dataset to assess the ability of each method's
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measurements to predict pathology-based AD severity staging at later
autopsy. Braak neurofibrillary tangle stages worsen from 1–6. For
reporting purposes, to show positive correlation coefficients, correla-
tions between volume or thickness measures and negative Braak stage
are shown. We include data for all ROIs, including those for which
high correlation with Braak stage is expected (e.g. entorhinal cortex, fu-
siform, etc.) and those for which low correlation with Braak stage is ex-
pected (e.g. postcentral, supplementary motor, etc.), according to
accepted biological models of AD.

3.5. Meta-ROI definition and evaluation

We formed an “AD-signature” composite or “meta ROI” for each
method to compare our evaluation criteria across all methods. Meta-
ROIs were created by combining volume or thickness measures across
the top six performing individual ROIs on the diagnostic separability
criteria (i.e. highest AUROC values). Volume measures were summed
across ROIs, FreeSurfer thicknesses were averaged across ROIs, and
ANTs and SPM+DiReCT thicknesses were averaged across ROIs and
weighted by each ROI's size. We describe the rationale for using the
top six ROIs below in Section 4.1.

Pair-wise differences in the evaluation criteria were tested across all
methods for the meta-ROIs. AUROCs between methods were tested
using the Delong standard error method (DeLong et al., 1988). Boot-
strapmethods with 10,000 bootstrap samples were used to test the dif-
ferences in the magnitude of correlation between the meta-ROI
thickness and TIV and the differences in ICC between each pair of
methods. Choi's test (Choi, 1977) was used to assess the difference in
dependent correlations between the meta-ROI thickness and negative
Braak stage.

4. Results and discussion

First, in Section 4.1 we describe our selection of signature meta-ROIs
for eachmethod.Next,we discuss in Section 4.2 the comparative perfor-
mance of these meta-ROIs on each criterion. Finally, in Section 4.3 we
compare other practical considerations (failure rate and runtimes) of
each method.

4.1. Selection of meta-ROIs for each method

First, we describe the rationale by which we chose our recommend-
ed meta-ROIs according to our goals (see Section 3.5). For economy of
presentation, we present the data used in their selection only in Supple-
mentary material.

For most methods, includingmore regions in the meta-ROI after the
top-performing ROI alone did not strongly improve diagnostic separa-
bility, but did often improve reliability and correlation with Braak
stage. Based on these data, we wished to design a signature measure
that would maximize performance according to each criterion, while
also including a large enough area to increase the power of themeasure
to quantify a wider range of disease stages (i.e. increase the dynamic
range of themeasure). Using these criteria,we selected and recommend
using the top six ROIs for each method, ranked according to their diag-
nostic separability. For most methods, these six ROIs generally covered
an area large enough to be reliablymeasuredwithout compromising di-
agnostic separability or correlation with -Braak stage. In Fig. 1, we show
the performance of the top six individual component ROIs for each
method that make up its meta-ROI. For visualization purposes, we also
provide a figure of the regions included for the SPM+DiReCT method
in Fig. 2.

The top six ROIs from eachmethod were generally a mixture of lim-
bic and inferior lateral temporal regions. The hippocampus and amyg-
dala regions performed highly for volume-based methods, but these
are not quantified by thickness-basedmethods,which favored the ento-
rhinal cortex. These regions are highly consistent with those regions
commonly associated with tau deposition in Alzheimer's disease at pa-
thology (Braak and Braak, 1991), and in in-vivo studies using Tau-PET
imaging (Lowe et al., 2016).

4.2. Performance of meta-ROIs for each method

We present in Fig. 3 the performance of each meta-ROI for each
method, according to each of our performance criteria. Confidence in-
tervals are presented in the figure, but we also provide a table of p-
values of each pairwise comparison in Supplementary Table S2.

4.2.1. Clinical diagnostic separability criterion
According to clinical diagnostic separability AUROCs, FreeSurfer

thickness had the highest performance of all signature meta-ROI mea-
sures, but its performance was not significantly better (with a signifi-
cance threshold of p b 0.05) than the next-best method, FreeSurfer
volumes (p= 0.12). Its performance was, however, significantly better
than that of SPM volumes (p=0.04) and SPM+DiReCT thickness (p=
0.02). ANTS thickness had the worst performance, which was signifi-
cantly worse than the FreeSurfer thickness (p b 0.001) and FreeSurfer
volume (p = 0.01) methods.

4.2.2. Correlation with TIV criterion
Both volume methods were similarly highly correlated with TIV

(p = 0.85) and significantly more correlated with TIV (p b 0.001 for
all) than all three thicknessmeasures. This result is expected, and agrees
with previously reported studies (Barnes et al., 2010). Although some
previous studies have suggested that the method of TIV calculation
used in FreeSurfer is more accurate than methods based on segmented
T1 images, such as that we use for our SPM- and ANTs-based pipelines
(Buckner et al., 2004), we did not find any significant differences in
the level of correlation between each volume-based signature and its
respective TIV measurement, suggesting that the differences in TIV cal-
culationmethodology are not relevant to each signaturemeasure's level
of correlationwith TIV. There were no significant differences in the cor-
relation with TIV across the three thickness measures (p ≥ 0.13).

4.2.3. Reliability criterion
Volume measures were very reliably measured and generally more

reliable than thickness measures, likely due to the increased computa-
tional challenge in measuring thickness from MRI. SPM volumes were
the most reliable, and this difference was significant versus FreeSurfer
volumes in the ADNI dataset (p b 0.001), but was not significant in the
Mayo dataset (p = 0.15). FreeSurfer volumes were significantly more
reliable than FreeSurfer thickness in all datasets (p ≤ 0.002).
SPM+DiReCT was the most reliable among thickness methods: it was
not significantly worse than FS volumes (p ≥ 0.11), but it was signifi-
cantly more reliable than FS thicknesses in the ADNI dataset
(p b 0.001), although this difference was not significant for the Mayo
dataset (p=0.24). The reliability of ANTS thicknesses was inconsistent
across datasets, making it difficult to draw conclusions about them.

4.2.4. Correlation with Braak stage (pathology)
FreeSurfer thickness and SPM+DiReCT thickness had the largest in-

verse correlations with Braak stage at pathology; however, these corre-
lationswere not significantly higher than the correlations seenwith the
volume measures (p ≥ 0.14) and were not significantly different from
each other (p = 0.68). ANTS thickness had by far the worst perfor-
mance. This difference was only significant versus the FreeSurfer and
SPM+DiReCT thickness methods (p = 0.001 and 0.01, respectively),
but not versus either volume (p ≥ 0.23).

4.3. Comparison of practical considerations between methods

While ease-of-use concerns are difficult to quantify and are not an
explicit criteria for differentiating methods in this manuscript, we



Fig. 1. Performance of individual ROIs included in meta-ROIs for each of the five methods. For each method, regions in each row are ordered best to worst by their performance in the
diagnostic separability (CN vs. MCI/AD) criteria, measured as an area under the receiver operating characteristic curve (AUROC), and plotted in the leftmost column. We show the six
regions with the highest AUROC for each method, which together form the meta-ROIs. The second column plots the Spearman rank correlation (rho) between the ROI and total
intracranial volume (TIV). The following two columns plot reliability of the measure in each ROI across successive scans, in the two Mayo and ADNI datasets respectively, as measured
by intraclass correlation coefficients (ICC). In the ADNI reliability dataset, the ICCs are shown by manufacturer and indicated by colored points. The rightmost column plots the
Spearman rank correlation between the ROI and negative Braak stage at autopsy. 95% confidence intervals are shown for all but the per-manufacturer Reliability-ADNI data. AUROC,
rho, and ICC values are shown to the right of each panel. Numeric volumes listed for the ADNI reliability panel are for all manufacturers combined. Larger values (toward the right) are
preferred in all columns with exception of the second, correlation with TIV, for which values near zero are preferred. Plots of performance for the top 20 ROIs by each method are
included in the Supplementary material.

Fig. 2. Regions included in our recommended AD signature meta-ROIs using the SPM+DiReCT thickness method: entorhinal cortex, fusiform, parahippocampal, mid-temporal, inferior
temporal, and angular gyrus.
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Fig. 3.Comparativeperformance summary of ADSignatureMeta-ROIs. A table of pair-wise
p-values for comparisons between methods by each criterion is provided in
Supplementary Table S2.

Fig. 4. Runtimes for candidate methods run on a single randomMayo subject scan.
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recognize that these can play an important role in many analyses and
discuss them here.

4.3.1. Failure rates
For FreeSurfer we define failures either as failing to produce thick-

ness values for a given scan, or producing cortical ribbon segmentations
that are significantlymisplaced (i.e. located outside the true cortical rib-
bon) for a given scan. After carefully running our datasets through
FreeSurfer under a variety of runtimeflags that appeared reasonable ac-
cording to the documentation, we determined the optimummethod of
running recon_all for both failure rate and diagnostic separability: using
the -3T flag, but not the -MPRAGE flag, on our 3T, MPRAGE scans which
had not undergone other preprocessing. With this we achieved a
FreeSurfer failure rate of only three subjects across all datasets (3 /
(216 + 21 + 133 + 82) = 3/452 ≈ 0.66%). FreeSurfer failures, when
encountered, occurred in scans of brainsmore impacted by AD and vas-
cular pathologies (Supplementary Fig. S12). This suggests, but does not
prove, that FreeSurfer failure rates are influenced by the severity of dis-
ease in input brain scans, and thus are a potentially biasing source of
missing data. Regardless, we did not encounter any such failures for
the SPM volume, ANTS thickness, or SPM+DiReCT pipelines. We hy-
pothesize that such differences in failure rates, and possibly systematic
sources of missing data, would be a possible consideration when de-
signing clinical trials with MRI-based endpoints.
4.3.2. Program runtime
Runtime is another practical consideration that can influence choice

of algorithm. In Fig 4we plot the comparative runtimes for eachmethod
while varying the number of processor cores used. A randomMayo sub-
ject was chosen for this experiment, because it is not feasible to run a
large number of subjects using all of these variations onmulti-user com-
puting grids while keeping each run isolated from each other and from
other users' jobs. However, these results are typical to our anecdotal ex-
periences running each algorithm. Runtime testing was performed
using multiple identical systems each with 2 Intel XEON X5670 (6
core) hyperthreaded processors, for a total of 12 physical cores, or 24
with hyperthreading, and 24GB DDR3 1333 MHz RAM. These systems
were free of other significant computing load at the time of testing.
Values for the SPM pipeline include the time to generate a warp to the
template using the ANTS algorithm for atlas propagation. Values for
SPM+DiReCT include the time for the SPM pipeline, which produces
the required input segmentations and nonlinear transformations to
the standard atlas. Values for FreeSurfer are given once for both volume
and thickness, because the surface-based algorithmthat produces thick-
ness values is also what produces the cortical parcellation for gray mat-
ter volumes.

Although it does not use multiple cores, the SPM volumes pipeline,
without DiReCT for thicknesses, was the fastest (approximately
80 min). SPM+DiReCT using a single core ran in about 70% of the
time required for FreeSurfer (approximately 7 h vs. 10 h). If more pro-
cessing cores were allowed, FreeSurfer required approximately 7 h
(using the -openmp recon-all flag), while SPM+DiReCT required
approximately 2 h (increasing the ITK_GLOBAL_DEFAULT_NUMBER_
OF_THREADS environment variable). ANTS thickness pipeline runtimes
were similar to those of SPM+DiReCT, also using the same environment
variable. All multi-core-enabled algorithms reached diminishing
speedups or began to slow down with more than six cores, potentially
because there were six cores per each of two processors on the test sys-
tems. Overall, for volumes-only, SPM was far faster than FreeSurfer.
Among thickness pipelines, ANTS and SPM+DiReCT were comparable
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and both clearly faster than FreeSurfer, ranging from2–5 h faster at each
number of cores allocated.
5. Discussion

5.1. Discussion

In this work we have tested many methods for a meta-ROI-based
“signature” measure of AD severity suitable for broad spectrum use
which includes epidemiological studies. While many of the methods
performed well, ultimately we and other groups must choose one.

In the diagnostic separability criterion, volume- and thickness-based
methods generally performed comparably to each other, while in the
pathology-correlation criterion, the FreeSurfer and SPM+DiReCT thick-
ness measures outperformed both volume-based methods, although
those differences were not statistically significant. Volume-based mea-
sures were generally more reliable than thickness-based measures,
and SPM volumes were significantly more reliable than all other
methods. SPM+DiReCT was the most reliable of all thickness-based
measures, and its reliability was not significantly worse than FS vol-
umes, the second-most reliable method. The strongest finding was
that volume measures are significantly more correlated with TIV than
thickness measures, which confirms previous studies (Barnes et al.,
2010).

When choosing whether to use volume- or thickness-based
methods, performance in diagnostic separability was generally compa-
rable between them. Correlation with pathology findings was also gen-
erally better for thickness, although those differences were not
significant. These suggest that applications desiring only these criteria
could reasonably select either volume- or thickness-based methods.
However, correlationwith TIVwas by far themost discriminating differ-
ence between volumes and thicknesses. Correlation with TIV is an im-
portant consideration when choosing a measure that will be used to
examine age and sex effects in epidemiological studies, but it is impor-
tant to note that correcting for TIV is not straightforward. On average,
men have larger heads than women, and consequently any apparent
sex effects in MRI measures are potentially confounded with TIV. In
any mixed-sex cohort over a wide range of ages, genuine differences
by sex are of interest and may be expected since, on average, men
have a greater relative risk for brain atrophy, hypothesized to be due
to increased prevalence of alpha-synuclein proteinopathies and in-
creased lifetime-cumulative exposure to cardiovascular and other risk
factors (DeCarli et al., 2005; Petersen et al., 2010; Savica et al., 2013).
The absence of an estrogen protective effect may also contribute. Addi-
tionally, the increased prevalence of disease with age naturally reduces
the correlation between volumes and TIV in older populations. These
factors suggest that attempts to correct volume measurements for TIV
should also be dependent upon both age and sex, i.e. more complex
than the traditional, simple linear regression method or ratio division
by TIV. Because a hypothetical multivariate correction requires a more
complex statistical model with interaction terms, these parameters
must be fine-tuned and validated. However, attempts to do this become
inherently circular, because it is impossible to separate sex-based differ-
ences in relative risk factors from biases due to imaging-based volume
measurements being correlatedwith TIV. Such a process has limitations
because over/under-correction could introduce artifactual age/sex ef-
fects or hide true age/sex effects in an analysis. Furthermore, because
the amount of correlation between volumeand TIV varies across regions
(Im et al., 2008), these age- and sex-dependent correctionsmust also be
created and validated separately for each ROI, making them even more
unwieldy in a multi-ROI environment. It has been demonstrated that
differing methods of estimating TIV and normalizing volume measure-
ments by TIV can produce associates that can depend on gender, age,
and atrophy (Nordenskjöld et al., 2013; Voevodskaya et al., 2014), can
affect study power (Hansen et al., 2015), and can depend on the study
populations and fine-tuning of algorithm parameters (Sargolzaei et al.,
2015).

For these reasons, we propose that the best solution for any re-
searcher desiring an epidemiological assessment of neurodegeneration
in regions characteristic of Alzheimer's disease in a cohort with a large
age range is to use thickness measurements rather than volumes, be-
cause thickness is sufficiently uncorrelated with TIV to render this chal-
lenging correction unnecessary. This choice allows for a measure
capable of investigating sex differences. It is important to note that
our recommendation here is limited to this epidemiological use case
for subjects across the entire age spectrum, and we are not challenging
the use of hippocampal volumes or other volume-based measures as a
diagnostic measure in older impaired individuals. Volume-based mea-
sures, unlike thickness, also allow measurement of values in regions
such as the hippocampus, amygdala, cerebellum, etc. that are not typi-
cally available in thickness pipelines either due to resolution con-
straints, or challenging anatomic shape. They also allow measurement
of structures that are not composed of gray matter, such as the pons
and midbrain. However, for typical AD most of the excluded structures
are less relevant, so this less of a concern.

Among thickness methods, ANTS thicknesses (using the ANTs Corti-
cal Thickness Pipeline as described in Sec. 2.3.4) had the worst perfor-
mance in the separability and pathology-correlation criteria, while
performing comparably in the other criteria versus the other thickness
measures. Therefore, this ANTs method is not recommended. Among
the remaining two candidates, FreeSurfer thickness significantly
outperformed SPM+DiReCT in the diagnostic separability criteria, al-
though the two were not significantly different in the correlation with
TIV or in the pathology-correlation criteria. SPM+DiReCT was more re-
liable than FreeSurfer thickness, which was significant in the ADNI
dataset, but not in the Mayo dataset.

Overall, the FreeSurfer and SPM+DiReCT thickness-based signa-
tures both performed well in our analyses. However, our group and
others must make a choice between them. Although somewhat worse
in diagnostic separability than FreeSurfer thickness (0.79 versus 0.86),
our groupwill ultimately use and recommend the SPM+DiReCT cortical
thickness method because of its superior reliability and runtime/failure
rates,while achieving similar performance in pathology- and TIV- corre-
lationmeasures. For thismethodwe recommendameta-ROI combining
values from the entorhinal cortex, fusiform, parahippocampal, mid-
temporal, inferior temporal, and angular gyrus regions. Other groups
may choose to use FreeSurfer because it is a publically available, sup-
ported, end-to-end package: with this we recommend an AD signature
based on cortical thickness estimates from the entorhinal cortex, inferi-
or temporal, mid-temporal, inferior parietal, fusiform, and precuneus
regions.

It is important to note that the AD signature we describe here is that
of typical late onset AD characterized by a predominantly amnestic
onset evolving to a multi-domain clinical presentation. Since clinical
phenotype closely matches the topographic pattern of atrophy in neu-
rodegenerative diseases, MRI signatures of atypical AD (e.g. logopenic
aphasia or posterior cortical atrophy syndromes) could be developed
using a similar approach.
5.2. Strengths and limitations of current study

The strength of this study lies primarily in providing a thorough
comparison of modern, popular methods for designing a “signature”
composite severity measure of AD-related neurodegeneration. We pro-
vide testing for both accuracy and precision (reliability) measures, and
we include correlation with Braak stage at later autopsy, which is ulti-
mately the gold standardmeasurement of AD severity, in a large cohort
of 82 subjects.We carefully tested eachmethod in preliminary analyses
to modify parameters and optimize accuracy, and we provide details of
these optimizations as a further benefit to the field.
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While this study tests several popularly available candidatemethods
for volume and thickness, several others remain untested, such as GM
volumes provided by FSL segmentations (Zhang et al., 2001) or ANTs
ATROPOS segmentations (Avants et al., 2011), or thicknesses measured
by algorithms like CIVET (Lerch and Evans, 2005) or Brainsuite
(Shattuck and Leahy, 2002). One could also examine other combina-
tions of segmentationmethods input to thickness methods, or methods
that include a combination of volume, thickness, and/or othermeasures
together. These are left for future work. We also did not examine ma-
chine-learning-based feature selection methods for meta-ROI selection,
or selection of individual voxels using voxel-based morphometry, prin-
ciple components analysis, etc., because such data-driven methods
would generally not have knowledge of biological plausibility to pro-
duce signature ROIs consistent with known pathophysiology of typical
AD (i.e. Braak staging), and imposing such constraints upon them via
statistical priors would severely limit their theoretical gains in perfor-
mance. We also did not present an analysis of surface area or curvature
measures produced by FreeSurfer in order to limit manuscript length
and complexity, but these were examined internally using the diagnos-
tic separability criterion, and their performanceswere sufficiently lower
than those of GMvolumes and thicknesses such that we did not explore
them further. Surface area was, as expected, also highly correlated with
TIV, limiting its potential attractiveness. To limitmanuscript complexity,
we also did not present the results of combinations of the FreeSurfer-
and SPM-based signatures using the differing approaches to TIV from
each, because these would not represent the natural use cases for each
method. However, we did internally assess correlation between
FreeSurfer volumes using TIV measures from SPM at an earlier stage of
the analysis, and it did not alter the requirement that such volumes
would require correction by TIV.

Because autopsy is the gold-standard measurement of AD severity,
we examined correlation between Braak stage and each of our imag-
ing-based measures. Between imaging and death, it is possible that
brain changes could have occurred that reduced these correlations.
However, this limitation was identical for all volume- and thickness-
based methods compared in this work, and thus should not have influ-
enced comparisons across methods.

We also only tested the most-current release of each algorithm at
the time the work began. We recognize that at time of writing,
FreeSurfer 6 release is imminent. It is not known to uswhether this ver-
sion will contain updates to algorithms relevant to our comparisons.
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